Archon/PRPs/ai_docs/ARCHITECTURE.md
Wirasm 1b272ed2af
docs: Update AI documentation to accurately reflect current codebase (#708)
* docs: Update AI documentation for accurate codebase reflection

- Replace obsolete POLLING_ARCHITECTURE.md with DATA_FETCHING_ARCHITECTURE.md
- Rewrite API_NAMING_CONVENTIONS.md with file references instead of code examples
- Condense ARCHITECTURE.md from 482 to 195 lines for clarity
- Update ETAG_IMPLEMENTATION.md to reflect actual implementation
- Update QUERY_PATTERNS.md to reflect completed Phase 5 (nanoid optimistic updates)
- Add PRPs/stories/ to .gitignore

All documentation now references actual files in codebase rather than
embedding potentially stale code examples.


* docs: Update CLAUDE.md and AGENTS.md with current patterns

- Update CLAUDE.md to reference documentation files instead of embedding code
- Replace Service Layer and Error Handling code examples with file references
- Add proper distinction between DATA_FETCHING_ARCHITECTURE and QUERY_PATTERNS docs
- Include ETag implementation reference
- Update environment variables section with .env.example reference


* docs: apply PR review improvements to AI documentation

- Fix punctuation, hyphenation, and grammar issues across all docs
- Add language tags to directory tree code blocks for proper markdown linting
- Clarify TanStack Query integration (not replacing polling, but integrating it)
- Add Cache-Control header documentation and browser vs non-browser fetch behavior
- Reference actual implementation files for polling intervals instead of hardcoding values
- Improve type-safety phrasing and remove line numbers from file references
- Clarify Phase 1 removed manual frontend ETag cache (backend ETags remain)
2025-09-19 13:29:46 +03:00

5.8 KiB

Archon Architecture

Overview

Archon is a knowledge management system with AI capabilities, built as a monolithic application with vertical slice organization. The frontend uses React with TanStack Query, while the backend runs FastAPI with multiple service components.

Tech Stack

Frontend: React 18, TypeScript 5, TanStack Query v5, Tailwind CSS, Vite Backend: Python 3.12, FastAPI, Supabase, PydanticAI Infrastructure: Docker, PostgreSQL + pgvector

Directory Structure

Backend (python/src/)

server/              # Main FastAPI application
├── api_routes/      # HTTP endpoints
├── services/        # Business logic
├── models/          # Data models
├── config/          # Configuration
├── middleware/      # Request processing
└── utils/           # Shared utilities

mcp_server/          # MCP server for IDE integration
└── features/        # MCP tool implementations

agents/              # AI agents (PydanticAI)
└── features/        # Agent capabilities

Frontend (archon-ui-main/src/)

features/            # Vertical slice architecture
├── knowledge/       # Knowledge base feature
├── projects/        # Project management
│   ├── tasks/       # Task sub-feature
│   └── documents/   # Document sub-feature
├── progress/        # Operation tracking
├── mcp/             # MCP integration
├── shared/          # Cross-feature utilities
└── ui/              # UI components & hooks

pages/               # Route components
components/          # Legacy components (migrating)

Core Modules

Knowledge Management

Backend: python/src/server/services/knowledge_service.py Frontend: archon-ui-main/src/features/knowledge/ Features: Web crawling, document upload, embeddings, RAG search

Project Management

Backend: python/src/server/services/project_*_service.py Frontend: archon-ui-main/src/features/projects/ Features: Projects, tasks, documents, version history

MCP Server

Location: python/src/mcp_server/ Purpose: Exposes tools to AI IDEs (Cursor, Windsurf) Port: 8051

AI Agents

Location: python/src/agents/ Purpose: Document processing, code analysis, project generation Port: 8052

API Structure

RESTful Endpoints

Pattern: {METHOD} /api/{resource}/{id?}/{sub-resource?}

Examples from python/src/server/api_routes/:

  • /api/projects - CRUD operations
  • /api/projects/{id}/tasks - Nested resources
  • /api/knowledge/search - RAG search
  • /api/progress/{id} - Operation status

Service Layer

Pattern: python/src/server/services/{feature}_service.py

  • Handles business logic
  • Database operations via Supabase client
  • Returns typed responses

Frontend Architecture

Data Fetching

Core: TanStack Query v5 Configuration: archon-ui-main/src/features/shared/queryClient.ts Patterns: archon-ui-main/src/features/shared/queryPatterns.ts

State Management

  • Server State: TanStack Query
  • UI State: React hooks & context
  • No Redux/Zustand: Query cache handles all data

Feature Organization

Each feature follows vertical slice pattern:

features/{feature}/
├── components/      # UI components
├── hooks/           # Query hooks & keys
├── services/        # API calls
└── types/           # TypeScript types

Smart Polling

Implementation: archon-ui-main/src/features/ui/hooks/useSmartPolling.ts

  • Visibility-aware (pauses when tab hidden)
  • Variable intervals based on focus state

Database

Provider: Supabase (PostgreSQL + pgvector) Client: python/src/server/config/database.py

Main Tables

  • sources - Knowledge sources
  • documents - Document chunks with embeddings
  • code_examples - Extracted code
  • archon_projects - Projects
  • archon_tasks - Tasks
  • archon_document_versions - Version history

Key Architectural Decisions

Vertical Slices

Features own their entire stack (UI → API → DB). See any features/{feature}/ directory.

No WebSockets

HTTP polling with smart intervals. ETag caching reduces bandwidth by ~70%.

Query-First State

TanStack Query is the single source of truth. No separate state management needed.

Direct Database Values

No translation layers. Database values (e.g., "todo", "doing") used directly in UI.

Browser-Native Caching

ETags handled by browser, not JavaScript. See archon-ui-main/src/features/shared/apiWithEtag.ts.

Deployment

Development

# Backend
docker compose up -d
# or
cd python && uv run python -m src.server.main

# Frontend
cd archon-ui-main && npm run dev

Production

Single Docker Compose deployment with all services.

Configuration

Environment Variables

Required: SUPABASE_URL, SUPABASE_SERVICE_KEY Optional: See .env.example

Feature Flags

Controlled via Settings UI. Projects feature can be disabled.

Recent Refactors (Phases 1-5)

  1. Removed ETag cache layer - Browser handles HTTP caching
  2. Standardized query keys - Each feature owns its keys
  3. Fixed optimistic updates - UUID-based with nanoid
  4. Configured deduplication - Centralized QueryClient
  5. Removed manual invalidations - Trust backend consistency

Performance Optimizations

  • Request Deduplication: Same query key = one request
  • Smart Polling: Adapts to tab visibility
  • ETag Caching: 70% bandwidth reduction
  • Optimistic Updates: Instant UI feedback

Testing

Frontend Tests: archon-ui-main/src/features/*/tests/ Backend Tests: python/tests/ Patterns: Mock services and query patterns, not implementation

Future Considerations

  • Server-Sent Events for real-time updates
  • GraphQL for selective field queries
  • Separate databases per bounded context
  • Multi-tenant support